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Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in 
Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic 
Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective 
tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth 
Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone 
formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in 
the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and 
drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.
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Introduction

FOP is a rare human genetic disorder in which ectopic bone 
formation occurs in connective tissue such as tendons, liga-
ments, and skeletal muscles throughout the body, leading 
to progressive loss of mobility, chronic pain, and eventual 
premature death mainly due to cardiorespiratory failure [1]. 
A worldwide prevalence of FOP is approximately one in 
two million population without ethnic, racial, or geographic 
predisposition [2]. One main symptom of FOP is a malfor-
mation of big toes at birth which also serves as an early 
diagnostic hallmark for FOP [2, 3]. In 2006, the first het-
erozygous missense causative mutation of FOP (617G>A; 
R206H) was reported in the gene-encoding ACVR1 [4]. 
Since then, additional new heterozygous missense causative 

mutations in ACVR1 have been reported, and further stud-
ies indicated that  ACVR1R206H mutation occurs in approxi-
mately 97% of FOP patients [5, 6] (Fig. 1). ACVR1, also 
known as ALK2, is a type I receptor of BMP signaling 
essential for normal skeleton formation and embryonic pat-
terning [7, 8]. For a more complete view of FOP etiology, 
clinical characteristics, diagnosis, and management, we refer 
the readers to the excellent reviews in these topics [2, 3, 9].

Early mechanistic studies showed that FOP ALK2 
mutants result in leaky BMP signaling in a basal condi-
tion and hyper-responsiveness upon BMP ligand stimula-
tion [10–17]. However, recent findings have confirmed that 
activin A, the ligand which normally transduces TGF-β sign-
aling, abnormally activates BMP signaling through FOP-
mutated ALK2 [18–21]. This abnormal activin A-induced 
BMP signaling is thought to trigger heterotopic ossification 
of connective tissues [22]. To date, although effective thera-
pies for FOP are unavailable, significant advances have been 
achieved in the development of potential FOP drugs, result-
ing in several promising therapies currently in clinical trials 
[23]. In this article, we review the recent progress in FOP 
mechanism studies and drug development, with a focus on 
the small-molecular and antibody drugs in the clinical trials 
for FOP treatment.
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BMP signaling and FOP

BMPs are secreted multi-functional growth factors, and they 
belong to the TGF-β super family. BMPs consist of more 
than 20 family members which play central roles in regu-
lating cellular morphogenesis, differentiation, proliferation, 
and apoptosis during embryogenesis and adult homeosta-
sis [24]. The BMPs signal transduction is mainly mediated 
through the canonic Smads-dependent pathway in which 
BMPs first bind to a heterotetrametric complex consisting of 
a type II receptor homodimer and a type I receptor homodi-
mer (Fig. 2). Then the type II receptors phosphorylate and 
activate the type I receptors, which in turn phosphorate 
Smad1/5/9 (also known as Smad1/5/8). The phosphoryl-
ated Smad1/5/9 subsequently form a complex with Smad4, 
which then translocates into the nucleus where it binds to 
BMP response elements and activates transcription of BMPs 
target genes [24, 25].

Four type I receptors, ALK1, ALK2, ALK3, and ALK6, 
are able to mediate BMP signaling and malfunctions of these 
four types I receptors are involved in many diseases includ-
ing cancer [26, 27]. In FOP, the most common mutation 
R206H is located at the intracellular glycine-serine-rich 
(GS) domain of ALK2, where FKBP12 protein (also known 
as FKBP1A) binds to ALK2 to prevent ALK2 activation in 
the absence of BMP ligands [12, 15, 16].  ALK2R206H has 

been shown to induce basal leaky BMP signaling in the 
absence of BMP ligands and hyper-responsiveness upon 
BMP ligand stimulation that was initially thought to result 
in the ectopic endochondral ossification in FOP [15–17, 28]. 
Later, additional FOP mutations have been identified in both 
GS domain and kinase domain of ALK2, which are associ-
ated with the disease onset ages and the extent of heterotopic 
ossification [5, 10, 29–32].

Nevertheless, recent findings have proved that activin 
A, a ligand which normally transduces TGF-β signaling, 
abnormally activates BMP signaling in FOP [18–21]. In 
normal physiological conditions, BMPs utilize ALK1/
ALK2/ALK3/ALK6 as the type I receptors to activate 
Smad1/5/9-dependent BMP signaling, while activin A 
signals through ALK4/ALK7 as the type I receptors for 
Smad2/3-dependent TGF-β signaling and activin A does 
not transduce Smad1/5/9-dependent BMP signaling [33] 
(Fig. 2). However, recent multiple studies have demon-
strated that activin A can activate Smad1/5/9-dependent 
BMP signaling in cells expressing  ALK2R206H in vitro and 
induced heterotopic ossification in a conditional knock-in 
mouse model of FOP in vivo [18–21, 34, 35]. In addition, 
this heterotopic ossification in the FOP mouse model can 
be blocked by the activin A-specific antibodies supporting 
that activin A cross-signal BMP pathway via mutated FOP 
ALK2 receptors [18–21]. Advances in understanding of the 

Fig. 1  FOP causative muta-
tions in ALK2 (ACVR1). 
ALK2 consists of ligand-
binding domain, transmembrane 
domain, GS-rich domain, and 
serine/threonine kinase domain. 
All the identified FOP causative 
mutations are located either in 
either GS-rich domain or the 
serine/threonine kinase domain
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FOP molecular mechanism have led to significant progress 
in FOP drug development.

Recent drug development for FOP

Based on the molecular mechanism underlying FOP, multi-
ple potential therapeutic targets have been selected for drug 
development to treat the disease.

Targeting ALK2

Since FOP is caused by the missense mutations of ALK2, 
ALK2 has been long thought as a potential therapeutic target 
for FOP and significant efforts have been made to develop 
ALK2 inhibitors.

Dorsomorphin, the first ALK2 chemical inhibitor, was 
identified from an in vivo screening of BMP inhibitors using 
zebrafish embryos [36] (Fig. 3). Unfortunately, Dorsomor-
phin displays notable off-targets against serval other kinases 
including Vascular Endothelial Growth Factor Receptor 2 
(VEGFR2), ALK5, AMP-activated kinase (AMPK) and 
platelet-derived growth factor receptor β (PDGFRβ) [37], 
raising concerns about its clinical safety [37, 38]. To develop 
more selective ALK2 inhibitors, we and colleagues have 
synthesized 63 Dorsomorphin analogs and identified DMH1 
from those analogs by using zebrafish embryo screening 

[37]. In contrast to Dorsomorphin, DMH1 is more selective 
to ALK2, and it does not exhibit detectable activities against 
the closely related kinases such as VEGFR2, ALK5, AMPK, 
and PDGFRβ [37]. Meanwhile, another ALK2 inhibitor, 
LDN-193189, was developed, and it shows better potency 
and selectivity than Dorsomorphin [39] (Fig. 3). Neverthe-
less, both DMH1 and LDN-193189 cannot well distinguish 
ALK2 from other BMP type I receptors (ALK1/3/6) which 
are essential for development and homeostasis [40–43]. 
Therefore, developing better ALK2 inhibitor is critical for 
FOP treatment with minimum side effects. Further investi-
gations discovered more selective ALK2 inhibitors, ML347 
and LDN-212854 with negligible inhibitory activities 
for all other kinases except ALK1 [44, 45] (Fig. 3). Very 
recently, Ullrich et al. reported a new potent and selective 
ALK2 inhibitor, compound 23, which displays excellent bio-
chemical and cellular potency, selectivity, and a favorable 
in vitro profiles for absorption, distribution, metabolism, and 
excretion [46]. However, none of the above selective ALK2 
inhibitors have moved into clinical trials.

Recently, Williams et al. screened over 220 small-molec-
ular kinase inhibitors which have either been approved pre-
viously by FDA or in clinical trials [47]. They identified 
a potent and selective ALK2 inhibitor, Saracatinib (also 
known as AZD0530), an orally bioavailable drug developed 
by AstraZeneca for the treatment of ovarian adenocarcinoma 

Fig. 2  The normal BMP/TGF-β signaling pathways and abnormal 
activin A-induced BMP signaling through the ALK2 mutants in FOP. 
BMP or activin A ligands assemble and bind to a heterotetramer com-
plex consisting of a type II receptor homodimer and a type I recep-
tor homodimer (e.g., ALK2 for BMP and ALK4/7 for activin A). 

The type II receptor phosphorylates the type I receptor, which sub-
sequently phosphorylates Smads (Smad1/5/9 for BMPs and Smad2/3 
for activin A) to transduce normal BMP and TGF-β signaling, respec-
tively. In contrast, in FOP, activin A can abnormally cross-signal 
BMP signaling through the ALK2 mutants
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[47, 48] (Fig. 3). Since Saracatinib effectively blocks het-
erotopic ossification in preclinical FOP models and displays 
excellent pharmacokinetic parameters and safety, Phase 
II clinical trial of Saracatinib for FOP was recently initi-
ated in August 2020 (NCT04307953) [49, 50] (Table 1). 
Another selective ALK2 inhibitor, INCB000928 that was 
originally developed to treat anemia as an iron homeostasis 

modulator, is now being evaluated for the efficacy and tol-
erability in the treatment of FOP in the phase II clinical 
trial (NCT05090891) [51, 52] (Table 1). Other than small-
molecular ALK2 inhibitors, an anti-ALK2 monoclonal anti-
body, DS-6016a, was developed as well by Daiichi Sankyo 
and Saitama Medical University in Japan. The Phase I clini-
cal trial of DS-6016a to assess its safety, tolerability, and 

Fig. 3  Chemical Structures of Small-Molecular Inhibitors of ALK2, Rapamycin, and Palovarotene

Table 1  Recent clinical trials 
for FOP (by November 2021).

NCT the national clinical trial, UMIN university hospital medical information network

Drug name Clinical phase Target NCT/UMIN number

Saracatinib Phase II ACVR1 NCT04307953
INCB000928 Phase II ACVR1 NCT05090891
DS-6016a Phase I ACVR1 NCT04818398
BLU-782 (IPN60130) Phase I ACVR1 NCT03858075
REGN2477 (Garetosmab) Phase II Activin A NCT03188666
Rapamycin Phase II/III mTORC1 UMIN000028429
Palovarotene Phase III Nuclear

RARγ
NCT03312634
NCT05027802
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pharmacokinetics in healthy participants is ongoing, and the 
study results have not been released to date (NCT04818398) 
[53] (Table 1).

Nevertheless, these ALK2-targeting potential drugs indis-
criminately target both wild-type ALK2 and FOP-mutated 
ALK2, leading to inhibition of important physiologic BMP 
signaling essential for normal cellular and tissue function. 
To overcome this challenge, Blueprint Medicines, Inc. 
developed a small molecule called BLU-782 (also known 
as IPN60130), which selectively targets the FOP-mutated 
ALK2 with minimal interference to the wild-type ALK2 
[54] (Fig. 3). The Phase I clinical trial BLU-782 in healthy 
volunteers to establish its safety of the investigational drug 
was recently completed (NCT03858075), and the result 
showed that BLU-782 is well tolerated with approximately 
24 h of half-life and displays excellent properties of pharma-
cokinetics and pharmacodynamics [55, 56] (Table 1).

Targeting activin A

Activin A normally mediates TGF-β signaling by using 
Activin Receptors type IIA or IIB (ActR-IIA/ActR-IIB) 
as type II receptors and ALK4/7 as type I receptors fol-
lowed by the downstream-phosphorylated Smad2/3 as 
intracellular signal transducers (Fig. 2). However, recent 
studies have confirmed that activin A abnormally activates 
BMP-Smad1/5/9 signaling through mutant ALK2 in FOP 
[18–21, 34, 35]. Given this interesting discovery, activin A 
has become a promising therapeutic target for FOP treat-
ment. REGN2477 (also known as Garetosmab), a human 
anti-activin A-neutralizing antibody, was examined in the 
FOP mouse model, and the result showed that REGN2477 
effectively inhibited heterotopic ossification [19]. The Phase 
I clinical trial of REGN2477 was completed, and the result 
demonstrated that REGN2477 displays great safety, toler-
ability, and pharmacokinetics [57]. Recently its Phase II 
clinical trial was initiated with a plan to administer 10 mg/
kg REGN2477 intravenously every 4 weeks to FOP patients 
(NCT03188666) [58]. As activin A also plays important 
roles in multiple biological functions such as ovarian fol-
licle maturation, spermatogenesis, steroidogenesis, muscle 
growth, immunity, inflammation, neuronal differentiation, 
and bone remodeling [59–64], the potential side effects of 
REGN2477 for activin A inhibition must be carefully moni-
tored in FOP patients (Table 1).

Targeting other associated transcriptional effectors

It is believed that activin A induces chondrogenesis via 
BMP signaling in FOP by differentiating connective tissue 
progenitor cells into chondrocytes and osteoblasts prior to 
eventual formation of heterotopic bones in soft tissues [34, 

65]. Thus, inhibition of chronogenesis may be a good strat-
egy to prevent heterotopic ossification in FOP.

Rapamycin

Rapamycin (also known as Sirolimus) is an immunosup-
pressive drug used to prevent transplant rejection and lym-
phangioleiomyomatosis, and it has been recently identified 
as a potential drug for the treatment of FOP (Fig. 3). In 
a high-throughput screening by using FOP patient-derived 
induced pluripotent stem cells (FOP-iPSCs) to identify sign-
aling pathways involved in activin A-induced chondrogen-
esis, Hino et al. found that the mammalian target of rapamy-
cin (mTOR) signaling is critical in enhanced chondrogenesis 
initiated by activin A and heterotopic ossification in FOP 
[66]. They further showed that Rapamycin attenuated het-
erotopic ossification in both FOP-ALK2R206H conditional 
transgenic mice and the mice with activin A-triggered het-
erotopic ossification derived from FOP-iPSCs [66]. Given 
the promising preclinical studies and its proved safety pro-
file, Phase II/III clinical trials of Rapamycin for randomized, 
placebo-controlled studies and subsequent open-label exten-
sion studies were initiated at Kyoto University Hospital in 
Japan (UMIN000028429), and the outcomes of this trial has 
not been publicly released (Table 1). Nevertheless, a case 
report recently showed that Rapamycin did not show clear 
benefits to heterotopic ossification reduction in two young 
patients with classic FOP-ALK2R206H mutation at the admin-
istrated dose [67].

Palovarotene

Retinoid signaling mediated by nuclear retinoic acid recep-
tors (RAR) plays a critical biological role in chondrogenesis 
and normal skeleton formation and retinoic acid signaling 
agonists could effectively block chondrogenesis and sub-
sequent heterotopic ossification in FOP [68–71]. In 2011, 
Shimono et al. showed that palovarotene (also known as 
R667), a specific agonist of the retinoic acid signaling by 
targeting nuclear retinoic acid receptor-γ (RARγ) with well 
characterized safety profile, inhibited heterotopic ossifica-
tion in a transgenic mouse model expressing  ALK2Q207D 
mutation [72] (Fig. 3). Later, Chakkalakal et al. examined 
palovarotene in a knock-in mouse model carrying the clas-
sic FOP-ALK2R206H mutation and demonstrated that palo-
varotene effectively blocks trauma-induced and spontaneous 
heterotopic ossification without comprising limb mobility 
and growth [73]. Importantly, palovarotene maintained 
joint, limb, and body motion, providing clear evidence 
for its encompassing therapeutic potential as a treatment 
for FOP [73]. In 2014, Clementia Pharmaceuticals initi-
ated a double-blinded, placebo-controlled Phase II clinical 
trial to evaluate whether palovarotene prevents heterotopic 
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ossification during and following a flare-up in FOP patients 
(NCT02190747). The trial was completed in 2016, and the 
result shows that palovarotene reduces the percentage of 
FOP patients developing heterotopic ossification, the time 
to remission and patient-reported pain associated with the 
flare-up area [74]. Currently, the Phase III clinical trial of 
palovarotene in FOP patients is in progress (NCT03312634). 
In addition, the rollover Phase III study was launched in 
November 2021 to further evaluate the safety and efficacy 
of palovarotene in adult and pediatric participants with 
FOP who have previously received palovarotene treatment 
(NCT05027802) [75] (Table 1).

Conclusion

In recent years, significant progresses have been made in 
understanding the molecular mechanism underlying FOP 
and developing FOP therapies. The discovery of causative 
mutations in ALK2 has made it a promising druggable tar-
get for FOP. Numerous small-molecular inhibitors and anti-
bodies targeting ALK2 have been developed. Among them, 
Saracatinib, DS-6016a, and BLU-782 are currently in FOP 
clinical trials. In addition, as activin A abnormally trans-
duces BMP signaling in FOP, REGN2477 antibody-target-
ing activin A has been studied for the treatment of FOP, and 
its efficacy is currently under evaluation in a Phase II clini-
cal trial. Moreover, potential drugs targeting transcriptional 
effectors associated with the early heterotopic ossification 
have also shown promise in the treatment of FOP, and their 
efficacies are being evaluated in clinical trials. For instance, 
a Phase II clinical trial has showed that RARγ agonist Palo-
varotene effectively reduces the percentage of FOP patients 
developing heterotopic ossification and the time to remission 
(NCT02190747) [74]. Additionally, Rapamycin was shown 
to attenuate heterotopic ossification in FOP mouse models 
[66], and a Phase II clinical trial for Rapamycin is currently 
ongoing. In summary, rapid, and exciting advances have 
been made in our understating of FOP mechanism and drug 
development. Several potential drugs are currently under 
clinical trials to treat FOP at multiple targets, which allows 
more effective combinatorial pharmacological management 
for FOP. Nevertheless, as physiological BMP signaling is 
critical to homeostasis and indiscriminately blocking BMP 
signaling to treat FOP may raise some concerns, therapeutic 
agents like BLU-782 that selectively targets only the mutant 
ALK2 with minimal interference to the wild-type ALK2 
may represent an excellent strategy for FOP treatment in 
the future.
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